
On the Synchronization Bottleneck 

of OpenStack Swift-Like Cloud 

Storage Systems

Presented by Andrew Vaillancourt
Grid and Cloud Computing – Winter 2019

IEEE Transctions on Parallel and Distributed Systems, Vol.28, No.9, 2018

Ruan, Titcheu, Zhai, Li, Liu, E, Cui, Xu



GCCW19

Overview

● Introduction & Motivation
● Preliminaries/Background
● Problem Statement
● Proposed Solution
● Results
● Conclusions



GCCW19

Introduction

● OpenStack Swift-like systems are an 
object storage method that replicates 
each object across multiple nodes.

● These systems rely on certain object-
synchronization protocols to achieve 
high reliabilty and eventual consistency

● This paper shows that the performance 
of these protocols relies heavily on the 
number of replicas per object and the 
number of objects, hosted on each node.



GCCW19

Methodology

● Building of a small Swift cluster to measure 
performance in varying data intensive 
environments.

● Determine under which conditions performance 
degrades (Synch Bottleneck).

● Review source code of OpenStack Swift to 
determine root cause of Synch Bottleneck.

● Design and implement improvements to 
OpenStack Swift (called LightSynch).

● Measure performance of LightSynch on lab 
scale and large scale Swift environments.



GCCW19

Preliminaries

● CAP Theorem
● Eventual Consistency
● Object Storage
● OpenStack Swift design and 

discussion of the synch protocols used



GCCW19

CAP Theorem

The CAP Theorem(Brewer) states that in 
distributed data storage systems, you 
can only provide 2 out of the following 3 
attributes simultaneously:

  1. Consistency

  2. Availability

  3. Partition Tolerance



GCCW19

CAP Theorem - Consistency

Consistency:
● A guarantee that every node in a distributed 

cluster returns the same, most recent, 
successful write. 

● Every client has the same view of the data. 
● There are various types of consistency models.
●  Consistency in CAP (used to prove the 

theorem) refers to sequential consistency, a 
very strong form of consistency.



GCCW19

CAP Theorem - Availability

Availability:
●  Every non-failing node returns a response 

for all read and write requests in a 
reasonable amount of time. 

● Guarantees that every request receives a 
response about whether it succeeded or 
failed.



GCCW19

CAP Theorem – Partion Tolerance

Partition Tolerance:
●  The system continues to operate even if 

any one part of the system is lost or fails 
●  A system that is partition-tolerant can 

sustain any amount of network failure that 
doesn’t result in a failure of the entire 
network.



GCCW19

CAP Theorem – Partion Tolerance

https://towardsdatascience.com/cap-theorem-and-distributed-database-management-systems-5c2be977950e



GCCW19

CAP Theorem – Availability vs Consistency 

● In modern day distributed systems, 
partition tolerance is a requirement, not an 
option.

● Therefore, the trade-offs to be considered 
when designing a distributed data store are 
almost always between availability and 
consistency

● Swift compromises on consistency, opting 
for a model known as eventual consistency



GCCW19

Eventual Consistency

● In order to maintain high-availabilty with 
reasonable response times, Swift uses the 
eventual consistency model.

● Given enough time, the replica values distributed 
across all nodes will be consistent eventually

● This implies that in some cases a client will read 
an old copy of the data object

● We will refer to the time period between an 
update and convergence (all connected nodes 
observe one another’s updates) as the synch 
delay 



GCCW19

OpenStack Swift Architecture

There are 2 types of nodes in a Swift cluster:
– Storage Node: 

● responsible for storing objects
– Proxy Node:

● acts as a bridge between client and storage nodes
● communicate with clients and retreive or allocate 

requested objects to/from storage nodes
● Uses the hash of an object to find which partition 

it’s in, and which disks/nodes have a replica of 
that partition



GCCW19

OpenStack Swift Architecture

● Proxy Nodes – handle incoming API 
requests

● Storage Nodes – store partitions on disks
● Partition – container of objects and lookup 

tables
– Replication and data movement among nodes 

is done at the partition-level
● Rings (DHT) – map logical names of data 

to locations on particular disks



GCCW19

OpenStack Swift Architecture

● Consistent Hashing: data is 
distributed using a hashing algorithm 
to determine its location. 

● Using only the hash of the ID of the data 
you can determine exactly where that data 
should be
– This mapping of hashes to locations is usually 

organized in a logical ring



GCCW19

OpenStack Swift Architecture



GCCW19

Experimental Setup

● 5 Nodes connected via Ethernet switch each with:
– 8 cores, 32gb RAM, 8 x 600 gb SAS disk drives
– 1 node runs the OpenStack authentication and 

networking services, and also acts as both the proxy node 
and storage node

– Other 4 nodes are only used for storage
● Multiple laptops attached to the switch to act as 

clients
– They will send object storage requests via SwiftStack 

Benchmark Suite as 6-10kb sized objects
● They state in their paper that object size/type has negligible 

impact on object synch performance 



GCCW19

Swift Results - Synch Delay

* in stable state



GCCW19

Swift Results - Network Overhead

* in stable state



GCCW19

Problem Statement

● The performance of the object-sync 
protocols relies heavily on 2 parameters:
– r –> number of replicas for each object
– n –> number of objects hosted on each node

● It was found that in data-intensive 
scenarios ( when r > 3, n >> 1000), the 
synch process is significantly delayed and 
produces massive network overhead.

● Referred to as the Synch Bottleneck 
Problem.



GCCW19

Synchronization Bottleneck

● These synch delay results occured in a 
stable state (few object updates)

● Synch delay increases by an 
additional 34% and 40.2%, 
respectively, in the presence of data 
creations and deletions

● It appears that the root cause of the 
synch bottleneck is the large network 
overhead



GCCW19

Swift Results - Network Overhead

● This massive network overhead results 
because the per-node, per-synch-round 
number of messages sent is Θ( n x r )

● all hashes of the objects, for each partition 
replica, must be sent to each node 
containing a replica
– Note: this is an all-to-all communication
– There is also the added overhead of having to 

push object updates to inconsistent nodes



GCCW19

Root Cause

● There seems to be 2 main causes to the 
synch bottleneck problem:

1. Large message size
● Hashes of each object in the partition is sent

2. High message count per synch round
● All-to-all communication

● Can this be improved?



GCCW19

Proposed Solution - LightSynch

● Hashing of Hashes (HoH)
● Circular Hash Checking (CHC)
● Failed Neighbour Handling (FNH)

3 Main Components:



GCCW19

Preliminary – Merkle Tree

● HoH aggregates all hashes of a partition into a 
Merkel Tree structure

● Merkle Tree: A hash tree where the parent nodes 
contain a hash of its child nodes

● Merkle trees are used so that data integrity 
can be compared quickly with one hash value, 
and if inconsistency is discovered, the offending 
leaf node can be be found in O(logn) time. 
– This data structure underpins many distributed 

technologies like BitTorrent and Blockchain.



GCCW19

Merkle Trees



GCCW19

LightSynch - HoH

● Problem: This just trades one large synch 
message for log(n) smaller messages

● Not really an improvement because of 
round-trip network latency

● Solution: LightSynch only maintains the 
root hash, and the leaf nodes. 
– If the root hashes of 2 partitions do not match, 

LightSynch will directly compare the hash 
values in all the leaves of the Merkle tree. 



GCCW19

LightSynch - HoH

● each initial synch message will only contain the 
root hash value of the partition

● the larger synch message containing the leaves 
will only be sent in the case when inconsistency 
is encountered
– Inconsistency is encountered far less than 

consistency, even in bursty update conditions and 
node failures



GCCW19

LightSynch – Circular Hash Checking

● HoH cuts down on message size..

...but what about the number of messages?
● Swift Architecture

– In Swift, when a node receives an update, it is 
responsible for pushing those updates to all 
other remote nodes

– Since the remote nodes have now been 
updated, they will also send synch messages 
back to all other nodes checking for consistency

– This is an all-to-all operation



GCCW19

LightSynch – Circular Hash Checking

● Circular Hash Checking
– Lightsynch instead organizes replicas in a  

logical ring, and only pushes updates to it’s 
clockwise neighbour

– This was not too challenging to implement 
because Swift already organizes its partitions 
in a ring

– This reduces the number of synch 
messages from r(r – 1) to r



GCCW19

LightSynch – Failed Node Handling

● Node failures significantly degrade the 
synch performance of Swift

● HoH and CHC do not alleviate these issues
● In fact, a node failure would likely impair 

the Circular Hash Checking protocol in 
LightSynch

● Thus, LightSynch needs to improve node 
failure detection and handling

 



GCCW19

LightSynch – Failed Node Handling

● Each CHC ring maintains a table of 
heartbeat responses from member nodes.

● If a threshold is passed without a 
response, the node is considered as failed 
and removed from the CHC ring.

● Also, when a node rejoins the ring, it’s 
neighbours’ partitions are moved to head 
of OpenStack’s synch queue so that the 
ring can be rebuilt quicker.  

 



GCCW19

LightSynch Results – Synch Delay



GCCW19

LightSynch Results – Network Overhead



GCCW19

Large Scale Experiement

64 VMs on Alibaba Cloud:
● Dual Intel Xeon 2.3GHz
● 4 GB RAM
● 600GB disk storage
● Ubuntu 16.04
● Connected by LAN



GCCW19

Large Scale Results – Synch Delay



GCCW19

Large Scale Results – Network Overhead



GCCW19

Conclusion

● The OpenStack Swift object synchronization 
protocols are not well suited to data-intensive 
scenarios.
– This is mainly due to the large network overhead.

●  This problem is significantly aggravated in the 
case of data updates and node failures.

● The design of LightSynch provides a provable 
guarantee on the reduction of network traffic 
with comparable CPU and memory usage.

● LightSynch works directly as an OpenStack Swift 
patch and can reduce the synch delay by up to 
879X and the network overhead by up to 47.5X.



GCCW19

My Conclusions

● Well-written paper

● Interesting work

● Quite well presented



GCCW19

Personal Conclusions/Criticism

● In lab-scale experiments, Node-0 was 
used to run the user authentication 
and networking services as well as 
function as both the proxy node and a 
storage node...



GCCW19

Personal Conclusions/Criticism

● Would this tripling of responsibilties have a 
negative effect on the throughput of the synch 
messages being sent?
–  What about it’s own local object synchronization?

● some of its resources are diverted to authenticate requests, as 
well as act as a proxy to the other nodes.

– They did mention that CPU and memory usage was 
affordable, but this seems like more of a networking 
issue.

● Large scale experiments, however, show similar 
results to the lab experiements, so perhaps this 
would not have a dramatic effect on performance.



GCCW19

Personal Conclusions/Criticism

● They seem to conflate replication at the object-
level and partition-level throughout their paper. 
– This may be confusing for a reader unfamiliar with 

Swift’s internal architecture.
● Partition count and size is static after cluster 

configuration, so I would’ve liked to have seen 
these varied in their experiments.

● They didn’t mention at what capacity the 
drives were at in their experiments, and if this 
would affect the synch delay.  



GCCW19

Personal Conclusions/Criticism

● Could’ve used a little more description 
about Swift’s internal architecture and 
design of it’s synch protocols throughout to 
better appreciate their improvements. 
– I had to do a lot of research on my own.  



GCCW19

Personal Conclusions/Criticism

Contradictions?
● Brief mention of synch threads optimization: 

– Swift’s way of “parallelzing” some portion of the 
synch functions. 

– They show that using 8 threads can reduce the 
synch delay from 58 to 21 minutes..

.. 2 sentences later say increasing parallelism 
contributes little to reduce synch delay??

  



GCCW19

Personal Conclusions/Criticism

Contradictions?
● State that the size of object reads/updates 

have negligible effect on the synch delay, 
but this was not proved to my satisfaction.
– At one point they state that the synch process 

is I/O bound.
– This would imply that object size is a factor, 

especially during object creation.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

